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ABSTRACT
This paper introduces a novel parameter-control framework to produce many new one-dimensional (1D) chaotic maps. It
has a simple structure and consists of two 1D chaotic maps, in which one is used as a seed map while the other acts as a
control map that controls the parameter of the seed map. Examples and analysis results show that these newly generated
chaotic maps have more complex structures and better chaos performance than their corresponding seed and control maps.
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1. INTRODUCTION
The chaotic map is a type of dynamic systems. It has the property of unpredictability and can generate different pseudo-
random sequences with infinitesimally different settings of initial values and control parameters. With these significative
properties, the chaotic map is a good candidate in many applications. In recent years, chaotic maps have been success-
fully used in economics,1 population dynamics,2 security applications3, 4 and so on. Especially when used in security
applications, compared with other security applications,5–8 the chaotic map-based applications show high performance.

When more and more chaotic maps are used in different applications, there come two obvious weaknesses of existing
1D chaotic maps. The first weakness is that the trajectories of existing 1D chaotic maps are easy to be predicted because
they usually have simple structures.9 The other is that the quality of pseudo-random sequences generated by existing 1D
chaotic maps is too low because their chaos performance is usually not so good.10 Therefore, developing new chaotic maps
with more complex structures and better chaos performance is necessary. In the application of image encryption, some
new chaotic maps have been developed.11, 12 These applications have proved that the new chaotic maps can improve the
image security level when used in image encryption.

In this paper, we propose a new parameter-control chaotic framework with a simple structure. Using this framework,
new 1D chaotic maps can be generated from any combination of two 1D chaotic maps. Examples and performance
comparisons are provided to demonstrate the performance of our proposed framework.

The rest of this paper is organized as follows: Section 2 will briefly review several traditional 1D chaotic maps.
In Section 3, the parameter-control chaotic framework will be proposed and discussed. Section 4 will introduce three
examples of new chaotic maps and their chaos performance will be discussed in Section 5. Section 6 will give a conclusion.

2. BACKGROUND
In this section, three 1D chaotic maps will be reviewed, which will be used to generate new chaotic maps in Section 4.

2.1 Tent map
The Tent map is a dynamic system that does the operations of folding and stretching. When the input value is smaller than
0.5, it will stretch the value. Otherwise, it will firstly fold the value into range of [0, 0.5], and then stretch it into range of
[0, 1]. By iterating the procedure, any initial point in range of [0, 1] will generate a sequence xn in [0, 1]. Mathematically,
the Tent map is defined as Eqn. (1)

xn+1 =

{
uxn for xn < 0.5

u(1− xn) for xn ≥ 0.5
(1)

where u is a parameter and u ∈[0, 2]. When the parameter u ∈(1, 2], the Tent map will be chaotic. The bifurcation diagram
and few initial iteration functions of the Tent map are shown in Fig. 1(a). From its bifurcation diagram, we can see that,
when u is close to 2, the Tent map’s chaos performance becomes better.

∗yicongzhou@umac.mo, Telephone: (853) 8397-8458

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2014, edited by 
Reiner Creutzburg, David Akopian, Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 9030, 90300M 

© 2014 SPIE-IS&T · CCC code: 0277-786X/14/$18 · doi: 10.1117/12.2049055

SPIE-IS&T/ Vol. 9030  90300M-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/20/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



G
k

0.8

0.6

0.4

0.2

0.2 0.4

x

0.6 0.8

c
k

0.8

0.6

0.4

0.2

2.5

a

3.5

0.8

0.6

0.4

0.2

0.2 0.4 0.6

x

0.8

c
k

0.8

0.6

0.4

0.2

5 0.6 0.7 0.8 0.9

0.8

0.6

0.4

0.2

x

(a) (b) (c)
Figure 1: The chaos performance of three traditional 1D chaotic maps. The first and second rows are the bifurcation diagrams and
iteration functions of (a) the Tent map; (b) the Logistic map and (c) the Sine map, respectively.

2.2 Logistic map
The Logistic map is a polynomial map widely used in many applications. Mathematically, the Logistic map is defined as
Eqn. (2)

xn+1 = axn(1− xn) (2)

where a is a parameter and a ∈[0, 4]. xn are the iteration values in range of [0, 1]. The bifurcation diagram and few initial
iteration functions of the Logistic map are shown in Fig. 1(b). As can be seen from its bifurcation diagram, when a ∈[3.57,
4] (approximately), the Logistic map is chaotic.

2.3 Sine map
The Sine map comes from the sine curve. Its chaotic behavior is similar with that of the Logistic map, but its mathematic
representation is totally different, which is defined as Eqn. (3)

xn+1 = rsin(πxn) (3)

where r is a parameter for the Sine map and r ∈[0, 1]. The iteration input/output values xn are in the range of [0, 1].
When the parameter r ∈[0.867, 1], the Sine map has chaotic behaviors. The bifurcation diagram and few initial iteration
functions of the Sine map are shown in Fig. 1(c). From the bifurcation diagrams of the Logistic and Sine maps, we can see
that their chaotic behaviors are similar.

3. NEW PARAMETER-CONTROL CHAOTIC FRAMEWORK
In this section, a new parameter-control chaotic framework is proposed. Using this framework, new 1D chaotic maps can
be generated from any two 1D chaotic maps. The proposed framework uses the output of one chaotic map to control the
parameter of another chaotic map. Its structure is shown in Fig. 2. As can be seen, the 1D chaotic map G(x) is used as a
seed map while another 1D chaotic map F (x) acts as a control map, which controls the parameter of the seed map. The
’Linear scaling’ operation is to ensure the parameters within G(x)’s chaotic range.

The mathematic representation of the framework is defined by Eqn. (4)

xn+1 = G(p′n+1, xn) (4)
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Figure 2: The proposed parameter-control chaotic framework.

where G(x) is the seed map which is an existing 1D chaotic map. xn are the iteration values of the new map and p′n+1 are
parameters defined by Eqn. (5)

p′n+1 = L(pn+1) (5)

where L(x) is a linear function that ensures the p′n+1 within G(x)’s chaotic range. pn+1 are generated by the control map
which are defined as Eqn. (6)

pn+1 = F (pn) (6)

in which the control map F (x) is also an existing 1D chaotic map.

The traditional 1D chaotic maps have a fixed parameter setting for all iterations. Using a 1D chaotic map to control
the parameter of the seed map, the proposed framework utilizes a dynamic parameter in each iteration to generate new
chaotic maps. This means that the newly generated chaotic maps have more complex structures and unpredictable output
sequences than traditional 1D chaotic maps. Therefore, the new chaotic maps generated by the proposed framework are
suitable for different applications such as information security.

4. EXAMPLES OF NEW CHAOTIC MAPS
Using different 1D chaotic maps as the seed and control maps in the proposed framework, new 1D chaotic maps can be
generated. In this section, three examples of new chaotic maps will be introduced to show the excellent properties of the
proposed framework.

4.1 The Tent-control Tent (TCT) map
In the proposed framework, the seed and control maps can be a same 1D chaotic map. When the seed and control maps
are both Tent maps, a new 1D chaotic map can be generated, called the Tent-control Tent (TCT) map. The structure of the
TCT map is shown in Fig. 3. A Tent map is used to control the parameter of another Tent map to generate iteration values.
By this way, the seed map’s parameter is no longer a fixed one and changes in each iteration.

The mathematic representation of the TCT map is defined by Eqn. (7)

xn+1 =

{
u′n+1xn for xn < 0.5

u′n+1(1− xn) for xn ≥ 0.5
(7)

where xn are iteration values and u′n+1 are parameters which are defined as Eqn. (8)

u′n+1 = 1.8 + 0.2un+1 (8)

in which un+1 are iteration values of control map defined in Eqn. (9)

un+1 =

{
uun for un < 0.5

u(1− un) for un ≥ 0.5
(9)
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Figure 3: The structure of the TCT map.

where u is a parameter of control map and u ∈[0, 2]. In the TCT map, u is the parameter and two initial values u0 and x0
are needed.

The bifurcation diagram is a straightforward way to show the characteristics of 1D chaotic maps. It plots the distribution
of output sequences along with the parameter(s). The chaotic behavior of a 1D chaotic map can be easily seen from its
bifurcation diagram.

The bifurcation diagram of the TCT map is shown in Fig. 4. From the diagram, we can see that the TCT map has
chaotic behaviors in the whole parameter range, and its output values distribute in a wider ranges compared with its seed
map, the Tent map shown in Fig. 1.

Figure 4: The bifurcation diagram of the TCT map.

4.2 The Logistic-control Sine (LCS) map
When the seed and control maps are two different 1D chaotic maps, and the Logistic map acts as the control map and the
Sine map is used as the seed map, a new 1D chaotic map can be generated, called the Logistic-control Sine (LCS) map.
The structure of the LCS map is shown in Fig. 5. From the structure we can see that the Logistic map is used to generate
dynamic parameters, and the Sine map uses the scaled dynamic parameters to generate iteration output values.

The mathematic representation of the LCS map is defined as Eqn. (10)

xn+1 = r′n+1sin(πxn) (10)
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Figure 5: The structure of the LCS map.

in which xn are iteration input/output values and r′n+1 are parameters defined by Eqn. (11)

r′n+1 = 0.9 + 0.1rn+1 (11)

where rn+1 are the iteration values of the control map, the Logistic map defined by Eqn. (12)

rn+1 = arn(1− rn) (12)

in which, a is a parameter, r0 and x0 are two initial values of the LCS map.

Figure 6: The bifurcation diagram of the LCS map.

The bifurcation diagram of the LCS map is shown in Fig. 6. From the diagram, we can see that the LCS map has chaotic
behavior in almost the entire parameter range [0, 4]. For its seed map, the Logistic map, it only has chaotic behaviors in
range of [3.57, 4], which can be seen in Fig. 1.

4.3 The Sine-control Logistic (SCL) map
When exchanging the control and seed maps in the LCS map, a new chaotic map can be generated, called the Sine-control
Logistic (SCL) map. It uses the Sine map as the control map and the Logistic map as the seed map. The structure of the
SCL map can be seen in Fig. 7. From the structure we can see that the Logistic map uses the parameters controlled by the
Sine map to generate iteration output values.
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Figure 7: The structure of the SCL map.

The SCL map’s mathematic representation is defined by Eqn. (13)

xn+1 = a′n+1xn(1− xn) (13)

where xn are the iteration input/output values and a′n+1 are parameters defined by Eqn. (14)

a′n+1 = 3.9 + 0.1an+1 (14)

where an+1 are the control map’s iteration values defined by Eqn. (15)

an+1 = rsin(πan) (15)

where r is a parameter of the control map and r ∈[0, 1]. In the SCL map, r is the parameter and two initial values a0 and
x0 are needed.

The bifurcation diagram of the SCL map is shown in Fig. 8. Even the LCS and SCL maps are both generated from the
proposed framework using the Logistic and Sine maps, from their bifurcation diagrams in Fig. 6 and Fig. 8, we can see
that they are totally different chaotic maps.

Figure 8: The bifurcation diagram of the SCL map.

5. CHAOS PERFORMANCE ANALYSIS AND COMPARISONS
In this section, we compare chaos performance between the newly generated chaotic maps and their corresponding control
and seed maps. The evaluation methods include the Lyaponuv exponent, Information entropy and Correlation test.
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5.1 Lyaponuv exponent
The chaotic behaviors of a dynamic system can be quantitatively measured by the Lyapunov exponent.13 For two extraor-
dinarily close trajectories in the phase plane, the Lyapunov exponent describes the exponential divergences between them.
A positive Lyapunov exponent means that the difference between two trajectories will exponentially increase in each unit
time. This means that, no matter how small difference their initial values are, the differences between two trajectories will
always increase along with the time change, making their output values totally different. That’s to say, a dynamic system
will be chaotic if it has a positive Lyapunov exponent value and a larger Lyapunov exponent value usually means better
chaos performance.

The definition of the Lyapunov exponent for the 1D discrete time system xn+1 = F (xn) is defined by Eqn. (16)

λ = lim
n→∞

1

n

n−1∑
i=0

ln |F ′(xi)| (16)

where F ′(xi) denotes the first-order derivative of F (xi).

(a) (b) (c)
Figure 9: The Lyapunov exponents of new chaotic maps. (a) the TCT map; (b) the LCS map; (c) the SCL map.

The Lyaponuv exponent values of the newly generated 1D chaotic maps are shown in Fig. 9, and the comparison results
between these new maps and their corresponding control and seed maps are shown in Table 1. From Fig. 9, we can see
that all new chaotic maps have positive Lyapunov exponent values almost in whole ranges of their parameters. This means
that they all have wide chaotic ranges. As seen from Table 1, under the same settings of parameters, all new chaotic maps
have bigger Lyapunov exponent values than their corresponding control and seed maps. Therefore, new chaotic maps have
better chaos performance than their control and seed maps.

Table 1: Comparisons between the new chaotic maps and their seed and control maps.

Lyaponuv exponent Information entropy (#Bin:256)

Parameters (u, r, a) (1.3, 0.9, 3.6) (1.5, 0.95, 3.7) (1.3, 0.9, 3.6) (1.5, 0.95, 3.7)

Tent map (u) 0.1823 0.4055 5.1202 6.5319

Sine map (r) 0.3527 0.4039 6.9830 7.1143

Logistic map (a) 0.1812 0.3544 6.3277 7.0896

TCT map (u) 0.6462 0.6504 7.7901 7.8044

LCS map (a) 0.5075 0.5220 7.8084 7.8464

SCL map (r) 0.5958 0.5871 7.8249 7.8333

5.2 Information entropy
The Information entropy14 can measure the distribution of a signal or a collection of datas. It gives a quantitative description
about the randomness of the signal or datas. The mathematic definition of Information entropy is shown as Eqn. (17)

H(X) = −
n∑

i=1

Pr(xi)log2Pr(xi) (17)
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where X is a collection of data and Pr(xi) is the probability of the ith possible value in X .

We can use the Information entropy to test the randomness of chaotic sequences. The bigger test value a chaotic
sequence gets, the better chaos performance the corresponding chaotic map will have. In our test, we set #Bin:256, which
means that we uniformly separate the data of chaotic sequences into 256 different levels. The maximum value of the
Information entropy H(X)max = Log2256 = 8 if and only if the numbers of data in each level are equal. That means
absolutely uniform distribution.

The Information entropy results between new chaotic maps and their control and seed maps are shown in Table 1.
Under the same parameter settings, the Information entropy values of the output sequences generated by new chaotic maps
are close to the maximum value. They are all bigger than those of the sequences generated by their corresponding control
and seed maps. Thus, the new chaotic maps have better chaos performance than their corresponding control and seed maps.

5.3 Correlation test
The relationship between two sequences of data can be described by the correlation. In mathematically, it is defined as
Eqn. (18)

c =
E[(X − µX)(Y − µY )]

σXσY
(18)

where X and Y are two sequences of data. µ is the mean value and σ is the standard derivation of a sequence.

(a) (b) (c)
Figure 10: Correlations of sequences generated by different new chaotic maps. The first, second and third columns plot the correlations
of the sequences generated by (a) the TCT map; (b) the LCS map and (c) the SCL map with a tiny change in initial values and parameters,
respectively.

We can use the correlation to evaluate how a chaotic map is sensitive to its initial values and parameters. When two
output sequences are generated by a chaotic map with a tiny change in initial values, smaller absolute correlation value
means the chaotic map is more sensitive to its initial values. The same rule happens to the parameter changes.

The relationship between two output sequences generated by new chaotic maps are plotted in Fig. 10, and the correlation
test results of new chaotic maps and their control and seed maps are shown in Table 2. Two sequences X1 and X2 are
generated by chaotic maps with a tiny change (10−12) in initial values, and X3 and X4 are generated with a tiny change
(10−12) in parameters. As can be seen in Fig. 10, the dots distribute randomly in the whole data ranges. This means that
two sequence pairs X1 and X2, X3 and X4 have no correlation with each other. Then we say that the new chaotic maps
are extremely sensitive to their initial values and parameters. From Table 2, we can see that, under the same settings of
parameters or initial values. The sequences generated by new chaotic maps have smaller absolute correlation values. Thus,
the new chaotic maps are more sensitive to initial values and parameters than their corresponding control and seed maps.
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Table 2: Correlation comparisons of the output sequences generated by new chaotic maps and their seed and control maps.

Correlation of X1 and X2 Correlation of X3 and X4

Parameters (u, r, a) (1.3, 0.9, 3.6) (1.5, 0.95, 3.7) (1.3, 0.9, 3.6) (1.5, 0.95, 3.7)

Tent map (u) 0.936523 0.047551 0.935089 0.115970

Sine map (r) 0.127062 0.119240 0.133634 0.012368

Logistic map (a) 0.923856 0.077346 0.926391 0.040122

TCT map (u) 0.051581 -0.015292 0.018896 -0.008228

LCS map (a) 0.022206 0.026636 0.043374 -0.004979

SCL map (r) 0.023941 0.034051 0.007855 -0.009183

6. CONCLUSION
In this paper, a new parameter-control chaotic framework was introduced. In this framework, a 1D chaotic map is used as
a seed map while another 1D chaotic map acts as a control map to generate new chaotic maps. Any existing 1D chaotic
map can be used as the control or seed map. Three examples of new chaotic maps, including the Tent-control Tent (TCT),
Logistic-control Sine (LCS) and Sine-control Logistic (SCL) maps were introduced to show the excellent properties of the
proposed framework.

Chaos performance analysis of these newly generated chaotic maps has shown that they can overcome the weaknesses
of existing 1D chaotic maps in simple structures and low chaos performance. The comparison results have shown that
these new chaotic maps have more complex structures and better chaos performance than their corresponding control and
seed maps.
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